
Gaussian Process Latent Variable Models

Ruby Sedgwick

Imperial College London

r.sedgwick19@imperial.ac.uk

1

mailto:r.sedgwick19@imperial.ac.uk


2



Overview

Motivation.

Principal component analysis.

Gaussian process latent variable models.

Applications.

3



Motivation

Data is often high dimensional.

In theory, in high dimensions we need a lot of data to learn anything (curse of
dimensionality).

Often the data actually lies on a lower dimensional manifold.

This means we can use useful representations from relatively small amounts of
data.
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Motivation

We want to learn a mapping from low dimensional space to a high dimensional space

where  is observed,  is an unobserved latent variable, and .

h ∈ R
Q ↦ y ∈ R

D

y h D > Q

→
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Motivating Example

Simulated Dataset, with 12 spatial dimensions, of pipeline transporting a mix of oil,
water and gas1.

0 1 2 3 4 5 6 7 8 9 10 11

0 0.6022 0.4851 0.9271 0.4647 1.1818 0.3103 1.7287 0.0006 2.1438 -0.1692 0.0210 1.7062

1 0.7532 0.3612 0.3635 1.0189 0.3685 0.5868 0.3342 1.0666 0.2891 0.6552 0.3743 1.0184

2 0.5023 0.2296 0.8095 0.3391 0.8645 0.4546 0.7044 0.4620 0.8431 0.5025 0.7605 0.3984

… … … … … … … … … … … … …

The �ow in the pipe takes one of the three �ow con�gurations: horizontally strati�ed,
nested annular or homogeneous mixture �ow.

However, the data is inherently two dimensional as the �ow is determined by the
fractions of water and oil (fraction of air is then determined as it must sum to one).
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Principal Component Analysis

Can we learn a low dimensional representation of this data?

For a dataset , ,Y = [y1, . . . , yN ]T yn ∈ R
D

We assume a linear mapping:

where  is the observed data,
 is the corrosponding latent point and

 is a linear mapping.

yn = Whn,

yn ∈ R
D

hn ∈ R
Q

W ∈ R
D×Q

 can be calculated in closed form by �nding
the eigenvalues and vectors of the covariance
matrix 

W

cov(Y, Y).
PCA on the Oil Flow Dataset

But real data is noisy…
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Probabilistic Principal Component Analysis

In Probabilistic PCA we assume the data in noisy:

yn = Whn + ϵn,

where  is a Gaussian noise term with variance :ϵn σ2

ϵn ∼ N (ϵn|0,σ2I).

This gives us the likelihood:

p(yn|hn, W,σ2) = N (yn|Whn,σ2I).
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Probabilistic Principal Component Analysis

Normally in PPCA, the latents are marginalised out by applying the prior
, giving a marginal likelihood of:p(hn) = N (0, I)

p(yn|hn, W,σ2) = ∫ p(yn|hn, W,σ2)p(hn)dhn

= N (yn|0, WWT + σ2I).

However, we can instead marginalise out  using the prior:W

p(W) =
D

∏

i=1

N (wi|0, I).
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Probabilistic Principal Component Analysis

For a set of data points  and corropsonding latent variables
, using this prior allows the marginal likelihood to take the

form:

where:

Y = [y1, . . . , yN ]T

H = [h1, . . . , hN ]T

p(Y |H,σ2) =
D

∏

i=1

p(y:,d|H,σ2),

p(y:,d|h:,d,σ2) = N (y:,d|0, HHT + σ2I).

We can then get  by optimising this marginal likelihood.W
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Probabilistic Principal Component Analysis

PPCA on the Oil Flow Dataset

Probabilistic Principal Component Analysis gives us a linear mapping
.h ↦ y

Is there a way we can learn more complex mappings?
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Gaussian Process Latent Variable Model 1

We can use a Gaussian process model but
this time the inputs 
are not observed.

The outputs  are
observed.

H = [h1, . . . , hN ]T

Y = [y1, . . . , yN ]T

This gives us the generative model:

y = f(h) + ϵ    f ∼ GP(0, k(h, h))    ϵ ∼ N (0,σ2
n).

 and ,  and  is the noise variance. Kernel  is
parameterised by hyperparameters .
hn ∈ R

Q yn ∈ R
D D > Q σ2

n k(h, h)
θ
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Gaussian Process Latent Variable Model

We �nd the optimal latent variables , kernel hyperparameters  and noise variance
 by optimising the log marginal likelihood.

H θ
σ2
n

To do this we take the likelihood:

p(Y|F, H, θ,σ2
n),

and marginalize out the function values :F = f(H)

p(Y|H, θ,σ2
n) = ∫ p(Y|F, H, θ,σ2

n)p(F|H, θ)dF

= N (0,K(H, H) + σ2
nI).
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Gaussian Process Latent Variable Model

This gives the log marginal likelihood:

where .

log p(Y|H, θ,σ2
n) = −

1

2
Tr(KH + σ2

nI)−1YYT

 data fit

−
D

2
log |KH + σ2

nI|

complexity penalty

−
DN

2
log 2π

norm. constant

.

 



KH = K(H, H)
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Gaussian Process Latent Variable Model

Our GPLVM marginal likelihood is:

p(Y |H, θ,σ2
n) = N (0,K(H,H) + σ2

nI).

What does this look a lot like?

Our PPCA marginal likelihood is:

where:

p(Y |X,σ2) =
D

∏

i=1

p(y:,d|X,σ2),

p(yn|hn,σ2) = N (yn|0, HHT + σ2I).

PPCA is equivalent to GPLVM with a linear kernel!
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PPCA vs GPLVM

PPCA

Linear mapping

GPLVM

Non-linear mapping

p(yn|hn,σ2) = N (yn|0, HHT + σ2I). p(Y |H, θ,σ2
n) = N (0,K(H, H) + σ2

nI).
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Limitations of GPLVM

GPLVM

Non-linear mapping

There is no good way to choose
the dimensions of the latent space

.Q

Latent variables  are
deterministic, which can lead to
over�tting.

H

There is a version of the GPLVM
called the Bayesian GPLVM that
addresses these issues.

p(Y |H, θ,σ2
n) = N (0,K(H, H) + σ2

nI).
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Use Cases

Learning pseudo-time in single cell data.

Learning latent dynamics of motion capture data.

Multi-output Gaussian processes.
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Psuedo-time in Single Cell Data

Cell Differentiation HierarchySingle cell gene expression
dataset1.

48 genes measured at 437 time
points (i.e.  ).Y ∈ R

48×437

However, we know there are 10
stages of development with a
branching pattern.

Can we use a GPLVM to distinguish the different stages of cell developement?
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Psuedo-time in Cell lines 1

1. Take observed data .Y ∈ R
48×437

2. Use the real time  to initialise the �rst
dimension of the latent variable:

τ ∈ R
N

p(hn,0) = τn,0.

3. Train the model by maximising the log marginal
likelihood.
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Psuedo-time in Cell lines

GPLVM �tted to single-cell data.
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Psuedo-time in Cell lines

PPCA and GPLVM �tted to single-cell data.
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Motion Capture Data 1

Image from Grochow, Keith, et al.

Each pose is represented by a 42 dimensional
vector which consists of joint angles, and the
position and orientation of the root of the
kinematic chain.

They then use a Gaussian process latent
variable model to learn a low dimensional
representation of the movement.

This has applications in animation from
creating poses for interactive characters to
doing real-time motion capture with missing
markers.
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Motion Capture Data

Grochow et al. 1 Human Motion Capture Latent Space.
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Multi-output Gaussian Processes 1

Multiple output functions 
.

{yp}P
p=1

In this model, the latent variable
Gaussian process is assumed to
have observed input dimensions

 as well as unobserved
one :
x ∈ R

Dx

h ∈ R
Q

yp(x) = f(x, hp) + ϵ. Latent Variable Multi-output Gaussian Process
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Multi-output Gaussian Processes

Latent Variable Multi-output Gaussian Process

This allows us to learn the
correlation between different
output functions, similar to the
linear model of coregionalisation.

This is useful for a range of
applications including multi-�delty
and multi-task optimisation.
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Multi-output Gaussian Processes for Transfer Learning 1

Simulated process data of the �ve historic products for the
�rst experimental condition. The markers × represent

measurements whichare taken after each full day. One example of a product embedding. The dimensions of
the embedding space do not carry any speci�c physical

meaning rather the information isencoded in the distances
between points.
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Summary

Gaussian processes can be used to learn low dimensional
representations of high dimensional data.

Probabilistic Principal Component Analysis is equivalent to a Gaussian
process latent variable model with a linear kernel.

This can be used for a wide range of applications such as grouping
development stages in cell lines and determining latent dynamics of a

system.
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The end! And Some Useful Resources…

Getting started with GPLVMs:

→

→

→

Useful videos / slides:

→

→

My email: r.sedgwick19@imperial.ic.ac.uk

pyro jupyter notebook demonstration on the cell data

pytorch jupyter notebook on GPLVMs

tensor�ow (GP�ow) implementation of Bayesian GPLVMs

Neil Lawrence: Bayesian GPLVMs and Deep GPs Video

Neil Lawrence: GPLVMs Slides
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https://pyro.ai/examples/gplvm.html
https://docs.gpytorch.ai/en/latest/examples/045_GPLVM/Gaussian_Process_Latent_Variable_Models_with_Stochastic_Variational_Inference.html
https://gpflow.github.io/GPflow/2.4.0/notebooks/basics/GPLVM.html
https://www.youtube.com/watch?v=fEWI6XDUGTo
https://gpss.cc/gprs15b/assets/session3.pdf

